XXIII. Dhofar 378 (ver. 2003) Basalt 15 grams #### Introduction Ikeda *et al.* (2002) reported another Martian meteorite (Dho 378) from Oman (found in an area near Dho 019). Dho 378 is somewhat similar to Dho 019, but has pyroxenes that are more Fe-rich and apparently lacks the Mg-rich olivine found in Dho 019 (Russell *et al.* 2002). Dreibus *et al.* (2002) find that Dho 378 is enriched in Na, Sr and feldspar compared with other shergottites. ## **Petrography** Dho 378 is reported to have "a doleritic or microgabbroic texture, and grain sizes of the main minerals about 1 mm" (Ikeda *et al.* 2002). It has a fresh black fusion crust and has been highly shocked (figure XXIII-1, not available). ### **Modal Mineralogy** | | Ikeda <i>et al.</i> (2002) | |---------------------|----------------------------| | Pyroxene | 49 % | | Plagioclase (glass) | 47 | | Opaques | 3 | | Phosphates | 1 | | Fayalite | tr. | | Silica | tr. | | Sulfide | tr. | ## **Mineral Chemistry** **Pyroxene**: Subcalcic clinopyroxene is exsolved and chemically zoned (figure XXIII-2). The Fe/(Mg+Fe) ratio varies from 0.4 to 0.9, and both Fe-rich hedenbergite and pyroxferroite are present. **Plagioclase**: Plagioclase (An₃₃₋₅₃) has been shockmelted to glass, which has re-crystallized at the rims. *Opaques*: Titanomagnetite includes ilmenite lamellae. **Phosphates**: Both whitlockite and minor apatite are reported. Figure XXIII-2: Pyroxene and olivine composition diagram for Dhofar 378 (replotted from Ikeda et al. 2002). ### **Whole-rock Composition** Dreibus *et al.* (2002) report an analysis of Dho 378 (table XXIII-1). They explain a slight positive Eu anomaly as due to high plagioclase/whitlockite ratio in the small split they analyzed (figure XXIII-3). They note that Dho 378 is "weakly contaminated with terrestrial U and K", as is the case for all Martian meteorites collected from "hot desert" sites. Figure XXIII-3: Rare earth element diagram for Dhofar 378 compared with Shergotty (data from Dreibus et al. 2002 and Lodders 2000). # Table XXIII-1: Composition Dhofar 378 # **Other Isotopes** The oxygen isotope composition, determined by Mayeda and Clayton and reported by Ikeda *et al.* (2002), is $\delta^{18}O = +4.46$ % and $\delta^{17}O = +2.52$ %, indicating that this meteorite is Martian. | reference
weight | Dreibus 2002 | | Ikeda 2002
fusion crust | | |---|--|---|---|--| | SiO2 %
TiO2
Al2O3
FeO
MnO
CaO
MgO
Na2O
K2O
P2O5
sum | 15.65
0.38
10.46
2.6
0.2 | (a)
(a)
(a)
(a)
(a) | 48.08
1.18
9.5
21.11
0.55
9.76
5.35
2.31
0.15
0.9
98.89 | (b (| | Sc ppm | 43.7 | (a) | | | | V
Cr
Co
Ni | 260
29.3
<40 | (a)
(a)
(a) | | | | Cu
Zn
Ga
Br
Rb | 77
23.6
0.89 | (a)
(a)
(a) | | | | Sr
Cs
Ba
La
Ce | 120
0.4
33
1.64
4.17 | (a)
(a)
(a)
(a)
(a) | | | | Pr
Nd
Sm
Eu
Gd
Tb
Dy
Ho
Er | 2.7
1.13
0.627
1.9
0.35
2.3
0.51 | (a)
(a)
(a)
(a)
(a)
(a)
(a) | | | | Tm
Yb
Lu
Hf
Ta | 1.27
0.2
1.49
0.14 | (a)
(a)
(a)
(a) | | | | Ir ppb
Au ppb
TI ppb
Bi ppb | <6
7.7 | (a)
(a) | | | | Th ppm
U ppm | 0.3
0.1 | (a)
(a) | | | technique: (a) INAA; (b) elec. probe